3.2.22 \(\int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx\) [122]

3.2.22.1 Optimal result
3.2.22.2 Mathematica [A] (verified)
3.2.22.3 Rubi [A] (verified)
3.2.22.4 Maple [A] (verified)
3.2.22.5 Fricas [B] (verification not implemented)
3.2.22.6 Sympy [F]
3.2.22.7 Maxima [B] (verification not implemented)
3.2.22.8 Giac [A] (verification not implemented)
3.2.22.9 Mupad [F(-1)]

3.2.22.1 Optimal result

Integrand size = 30, antiderivative size = 101 \[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=\frac {\cot (e+f x)}{2 a c f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {\log (\sin (e+f x)) \tan (e+f x)}{a c f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \]

output
1/2*cot(f*x+e)/a/c/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)+ln(sin( 
f*x+e))*tan(f*x+e)/a/c/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)
 
3.2.22.2 Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.71 \[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=\frac {\cot (e+f x)+2 (\log (\cos (e+f x))+\log (\tan (e+f x))) \tan (e+f x)}{2 a c f \sqrt {a (1+\sec (e+f x))} \sqrt {c-c \sec (e+f x)}} \]

input
Integrate[1/((a + a*Sec[e + f*x])^(3/2)*(c - c*Sec[e + f*x])^(3/2)),x]
 
output
(Cot[e + f*x] + 2*(Log[Cos[e + f*x]] + Log[Tan[e + f*x]])*Tan[e + f*x])/(2 
*a*c*f*Sqrt[a*(1 + Sec[e + f*x])]*Sqrt[c - c*Sec[e + f*x]])
 
3.2.22.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.70, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4393, 25, 3042, 25, 3954, 25, 3042, 25, 3956}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sec (e+f x)+a)^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4393

\(\displaystyle \frac {\tan (e+f x) \int -\cot ^3(e+f x)dx}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\tan (e+f x) \int \cot ^3(e+f x)dx}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\tan (e+f x) \int -\tan \left (e+f x+\frac {\pi }{2}\right )^3dx}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\tan (e+f x) \int \tan \left (\frac {1}{2} (2 e+\pi )+f x\right )^3dx}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 3954

\(\displaystyle \frac {\tan (e+f x) \left (\frac {\cot ^2(e+f x)}{2 f}-\int -\cot (e+f x)dx\right )}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\tan (e+f x) \left (\int \cot (e+f x)dx+\frac {\cot ^2(e+f x)}{2 f}\right )}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (e+f x) \left (\int -\tan \left (e+f x+\frac {\pi }{2}\right )dx+\frac {\cot ^2(e+f x)}{2 f}\right )}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\tan (e+f x) \left (\frac {\cot ^2(e+f x)}{2 f}-\int \tan \left (\frac {1}{2} (2 e+\pi )+f x\right )dx\right )}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 3956

\(\displaystyle \frac {\tan (e+f x) \left (\frac {\cot ^2(e+f x)}{2 f}+\frac {\log (-\sin (e+f x))}{f}\right )}{a c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

input
Int[1/((a + a*Sec[e + f*x])^(3/2)*(c - c*Sec[e + f*x])^(3/2)),x]
 
output
((Cot[e + f*x]^2/(2*f) + Log[-Sin[e + f*x]]/f)*Tan[e + f*x])/(a*c*Sqrt[a + 
 a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])
 

3.2.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 

rule 4393
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_))^(m_), x_Symbol] :> Simp[((-a)*c)^(m + 1/2)*(Cot[e + f*x]/(Sqrt[ 
a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]))   Int[Cot[e + f*x]^(2*m), x] 
, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b 
^2, 0] && IntegerQ[m + 1/2]
 
3.2.22.4 Maple [A] (verified)

Time = 2.26 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.55

method result size
default \(-\frac {\left (4 \cos \left (f x +e \right )^{2} \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-4 \cos \left (f x +e \right )^{2} \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-\cos \left (f x +e \right )^{2}-4 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+4 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-1\right ) \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \tan \left (f x +e \right )}{4 f \,a^{2} \sqrt {-c \left (\sec \left (f x +e \right )-1\right )}\, c \left (\sec \left (f x +e \right )-1\right ) \left (\cos \left (f x +e \right )+1\right )^{2}}\) \(157\)
risch \(-\frac {i {\mathrm e}^{4 i \left (f x +e \right )} \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )+{\mathrm e}^{4 i \left (f x +e \right )} f x +2 \,{\mathrm e}^{4 i \left (f x +e \right )} e -2 i {\mathrm e}^{2 i \left (f x +e \right )} \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )-2 \,{\mathrm e}^{2 i \left (f x +e \right )} f x -4 \,{\mathrm e}^{2 i \left (f x +e \right )} e -2 i {\mathrm e}^{2 i \left (f x +e \right )}+i \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )+f x +2 e}{a c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, f}\) \(242\)

input
int(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x,method=_RETURNVERBOS 
E)
 
output
-1/4/f/a^2*(4*cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e))-4*cos(f*x+e)^2*ln(2/ 
(cos(f*x+e)+1))-cos(f*x+e)^2-4*ln(-cot(f*x+e)+csc(f*x+e))+4*ln(2/(cos(f*x+ 
e)+1))-1)*(a*(sec(f*x+e)+1))^(1/2)/(-c*(sec(f*x+e)-1))^(1/2)/c/(sec(f*x+e) 
-1)/(cos(f*x+e)+1)^2*tan(f*x+e)
 
3.2.22.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (91) = 182\).

Time = 0.49 (sec) , antiderivative size = 492, normalized size of antiderivative = 4.87 \[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=\left [-\frac {9 \, \sqrt {-a c} {\left (\cos \left (f x + e\right )^{2} - 1\right )} \log \left (-\frac {8 \, {\left ({\left (256 \, \cos \left (f x + e\right )^{5} - 512 \, \cos \left (f x + e\right )^{3} + 175 \, \cos \left (f x + e\right )\right )} \sqrt {-a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} - {\left (256 \, a c \cos \left (f x + e\right )^{4} - 512 \, a c \cos \left (f x + e\right )^{2} + 337 \, a c\right )} \sin \left (f x + e\right )\right )}}{{\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + {\left (16 \, \cos \left (f x + e\right )^{3} - 25 \, \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{18 \, {\left (a^{2} c^{2} f \cos \left (f x + e\right )^{2} - a^{2} c^{2} f\right )} \sin \left (f x + e\right )}, -\frac {18 \, \sqrt {a c} {\left (\cos \left (f x + e\right )^{2} - 1\right )} \arctan \left (\frac {{\left (16 \, \cos \left (f x + e\right )^{3} - 7 \, \cos \left (f x + e\right )\right )} \sqrt {a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{{\left (16 \, a c \cos \left (f x + e\right )^{2} - 25 \, a c\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + {\left (16 \, \cos \left (f x + e\right )^{3} - 25 \, \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{18 \, {\left (a^{2} c^{2} f \cos \left (f x + e\right )^{2} - a^{2} c^{2} f\right )} \sin \left (f x + e\right )}\right ] \]

input
integrate(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="fr 
icas")
 
output
[-1/18*(9*sqrt(-a*c)*(cos(f*x + e)^2 - 1)*log(-8*((256*cos(f*x + e)^5 - 51 
2*cos(f*x + e)^3 + 175*cos(f*x + e))*sqrt(-a*c)*sqrt((a*cos(f*x + e) + a)/ 
cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)) - (256*a*c*cos(f*x + 
 e)^4 - 512*a*c*cos(f*x + e)^2 + 337*a*c)*sin(f*x + e))/((cos(f*x + e)^2 - 
 1)*sin(f*x + e)))*sin(f*x + e) + (16*cos(f*x + e)^3 - 25*cos(f*x + e))*sq 
rt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + 
e)))/((a^2*c^2*f*cos(f*x + e)^2 - a^2*c^2*f)*sin(f*x + e)), -1/18*(18*sqrt 
(a*c)*(cos(f*x + e)^2 - 1)*arctan((16*cos(f*x + e)^3 - 7*cos(f*x + e))*sqr 
t(a*c)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/c 
os(f*x + e))/((16*a*c*cos(f*x + e)^2 - 25*a*c)*sin(f*x + e)))*sin(f*x + e) 
 + (16*cos(f*x + e)^3 - 25*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x 
 + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)))/((a^2*c^2*f*cos(f*x + e)^2 
 - a^2*c^2*f)*sin(f*x + e))]
 
3.2.22.6 Sympy [F]

\[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=\int \frac {1}{\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e))**(3/2),x)
 
output
Integral(1/((a*(sec(e + f*x) + 1))**(3/2)*(-c*(sec(e + f*x) - 1))**(3/2)), 
 x)
 
3.2.22.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 486 vs. \(2 (91) = 182\).

Time = 0.38 (sec) , antiderivative size = 486, normalized size of antiderivative = 4.81 \[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=-\frac {{\left ({\left (f x + e\right )} \cos \left (4 \, f x + 4 \, e\right )^{2} + 4 \, {\left (f x + e\right )} \cos \left (2 \, f x + 2 \, e\right )^{2} + {\left (f x + e\right )} \sin \left (4 \, f x + 4 \, e\right )^{2} + 4 \, {\left (f x + e\right )} \sin \left (2 \, f x + 2 \, e\right )^{2} + f x + {\left (2 \, {\left (2 \, \cos \left (2 \, f x + 2 \, e\right ) - 1\right )} \cos \left (4 \, f x + 4 \, e\right ) - \cos \left (4 \, f x + 4 \, e\right )^{2} - 4 \, \cos \left (2 \, f x + 2 \, e\right )^{2} - \sin \left (4 \, f x + 4 \, e\right )^{2} + 4 \, \sin \left (4 \, f x + 4 \, e\right ) \sin \left (2 \, f x + 2 \, e\right ) - 4 \, \sin \left (2 \, f x + 2 \, e\right )^{2} + 4 \, \cos \left (2 \, f x + 2 \, e\right ) - 1\right )} \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) - 1\right ) + 2 \, {\left (f x - 2 \, {\left (f x + e\right )} \cos \left (2 \, f x + 2 \, e\right ) + e + \sin \left (2 \, f x + 2 \, e\right )\right )} \cos \left (4 \, f x + 4 \, e\right ) - 4 \, {\left (f x + e\right )} \cos \left (2 \, f x + 2 \, e\right ) - 2 \, {\left (2 \, {\left (f x + e\right )} \sin \left (2 \, f x + 2 \, e\right ) + \cos \left (2 \, f x + 2 \, e\right )\right )} \sin \left (4 \, f x + 4 \, e\right ) + e + 2 \, \sin \left (2 \, f x + 2 \, e\right )\right )} \sqrt {a} \sqrt {c}}{{\left (a^{2} c^{2} \cos \left (4 \, f x + 4 \, e\right )^{2} + 4 \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right )^{2} + a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right )^{2} - 4 \, a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right ) \sin \left (2 \, f x + 2 \, e\right ) + 4 \, a^{2} c^{2} \sin \left (2 \, f x + 2 \, e\right )^{2} - 4 \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right ) + a^{2} c^{2} - 2 \, {\left (2 \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right ) - a^{2} c^{2}\right )} \cos \left (4 \, f x + 4 \, e\right )\right )} f} \]

input
integrate(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="ma 
xima")
 
output
-((f*x + e)*cos(4*f*x + 4*e)^2 + 4*(f*x + e)*cos(2*f*x + 2*e)^2 + (f*x + e 
)*sin(4*f*x + 4*e)^2 + 4*(f*x + e)*sin(2*f*x + 2*e)^2 + f*x + (2*(2*cos(2* 
f*x + 2*e) - 1)*cos(4*f*x + 4*e) - cos(4*f*x + 4*e)^2 - 4*cos(2*f*x + 2*e) 
^2 - sin(4*f*x + 4*e)^2 + 4*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) - 4*sin(2*f* 
x + 2*e)^2 + 4*cos(2*f*x + 2*e) - 1)*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 
 2*e) - 1) + 2*(f*x - 2*(f*x + e)*cos(2*f*x + 2*e) + e + sin(2*f*x + 2*e)) 
*cos(4*f*x + 4*e) - 4*(f*x + e)*cos(2*f*x + 2*e) - 2*(2*(f*x + e)*sin(2*f* 
x + 2*e) + cos(2*f*x + 2*e))*sin(4*f*x + 4*e) + e + 2*sin(2*f*x + 2*e))*sq 
rt(a)*sqrt(c)/((a^2*c^2*cos(4*f*x + 4*e)^2 + 4*a^2*c^2*cos(2*f*x + 2*e)^2 
+ a^2*c^2*sin(4*f*x + 4*e)^2 - 4*a^2*c^2*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) 
 + 4*a^2*c^2*sin(2*f*x + 2*e)^2 - 4*a^2*c^2*cos(2*f*x + 2*e) + a^2*c^2 - 2 
*(2*a^2*c^2*cos(2*f*x + 2*e) - a^2*c^2)*cos(4*f*x + 4*e))*f)
 
3.2.22.8 Giac [A] (verification not implemented)

Time = 2.16 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.48 \[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=-\frac {\frac {4 \, \log \left ({\left | c \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}\right )}{\sqrt {-a c} a {\left | c \right |}} - \frac {8 \, \log \left ({\left | c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + c \right |}\right )}{\sqrt {-a c} a {\left | c \right |}} + \frac {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c}{\sqrt {-a c} a c {\left | c \right |}} - \frac {4 \, c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c}{\sqrt {-a c} a c {\left | c \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}}{8 \, f} \]

input
integrate(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="gi 
ac")
 
output
-1/8*(4*log(abs(c)*tan(1/2*f*x + 1/2*e)^2)/(sqrt(-a*c)*a*abs(c)) - 8*log(a 
bs(c*tan(1/2*f*x + 1/2*e)^2 + c))/(sqrt(-a*c)*a*abs(c)) + (c*tan(1/2*f*x + 
 1/2*e)^2 - c)/(sqrt(-a*c)*a*c*abs(c)) - (4*c*tan(1/2*f*x + 1/2*e)^2 - c)/ 
(sqrt(-a*c)*a*c*abs(c)*tan(1/2*f*x + 1/2*e)^2))/f
 
3.2.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))^{3/2}} \, dx=\int \frac {1}{{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}\,{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/((a + a/cos(e + f*x))^(3/2)*(c - c/cos(e + f*x))^(3/2)),x)
 
output
int(1/((a + a/cos(e + f*x))^(3/2)*(c - c/cos(e + f*x))^(3/2)), x)